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Abstract: This work is devoted to constructing a modified non-classical theory of 
plates without preliminary hypotheses about the distribution of the displacement 
vector and the deformation tensor on the basis of three-dimensional equations of the 
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Introduction 

Plates are elements of thin-walled and thick-walled structures that are used in 
various fields of modern technology and construction of new facilities. Therefore, the 
determination of the stress-strain state of these elements is of great practical 
importance. At the same time, the solutions of some problems of statics, vibration and 
stability of these structures have been known even before a mathematical theory of 
elasticity was formulated [1]. 

A plate is a three-dimensional body where one of the dimensions is much 
smaller than the two others, so this body can be considered as two-dimensional with 
an important bearing capacity. Finding a solution of boundary-value problems for 
plates on the basis of the elasticity theory has significant difficulties, in this regard, a 
two-dimensional model is built to calculate this type of structure, which, in turn, takes 
into account the stress-strain state and a geometric feature. 

In the elasticity theory there are various ways to reduce a three-dimensional 
problem to a two-dimensional one. These ways contribute to a significant 
simplification of the mathematical problem for which the number of independent 
variables is reduced to two ones. The special features of the distribution of stresses and 
strains in these bodies (plates, shells) are also taken into account. After reducing this 
type of boundary-value problems from three-dimensional to two-dimensional, their 
mathematical models are built on the basis of force and kinematic hypotheses [2]. 

Improved theories of shells and plates have significantly expanded the elasticity 
theory application in the engineering field [3,4,5]. In this paper, we will consider the 
reduction of a three-dimensional problem to a two-dimensional one using various 
versions of the improved theories of plates and shells. Also, the main difference 
between this work and the well-known works of the non-classical elasticity theory is 
that the coordinate origin is placed not in the plate middle where the Kirchhoff 
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hypotheses are applied but starts at zero, which significantly changes the form of 
problem solving to a new version. 

 
1. Problem statement  

In the Cartesian coordinate system 𝑂𝑥1𝑥2𝑥3 , the stressed state of a three-
dimensional body being under the action of surface and volume forces is described by 
the following nonlinear equation of motion [6,7,8] 

𝜎𝑖𝑗 ’𝑗 + 𝑋𝑖 − 𝜌𝑈̈𝑖 = 0                               (1) 

where 𝜎𝑖𝑗 is the stress tensor, 𝑈𝑖 is the displacement vector, 𝑋𝑖 are volume forces. 

The defining relations between the stress tensor 𝜎𝑖𝑗 and the finite strain tensor 

𝜀𝑖𝑗 have the form 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙,                                              (2) 

and the geometric Cauchy relation between the displacement vector 𝑈𝑖  and the 
components 𝜀𝑖𝑗 

𝜀𝑖𝑗 =
1

2
(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖)(3) 

when the initial conditions  

𝑈𝑖|𝑡=0 = 𝑈𝑖
0, 𝑈̇𝑖|𝑡=0 = 𝑉𝑖

0=0,                                   (4) 

and the boundary ones are met 

𝑈𝑖|𝛴1 = 𝑈𝑖
𝛴,    𝜎𝑖𝑗𝑛𝑗|𝛴2

= 𝑆𝑖,                            (5) 

where 𝑈𝑖
𝛴 are the displacements specified at the boundary parts  𝛴 = 𝛴1 + 𝛴2, 𝑈𝑖

0, 𝑉𝑖
0 

are the characterizing initial conditions, 𝑛𝑗  is the outer normal, ρ is the density, 𝐶𝑖𝑗𝑘𝑙 is 

the tensor of physical constants of materials [9,10]. 
In the above expressions there are operations of tensor analysis where the 

indices take the values 1,2,3 [11,12]. 
For isotropic materials, the following relationships are valid: 

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘),                       (6) 

where 

𝜆 =
𝐸𝜈

(1−2𝜈)(1+𝜈)
 ,  𝜇 =

𝐸

2(1+𝜈)
 

𝜆, 𝜇 are the Lame coefficients, E is the elasticity modulus, ν is the Poisson ratio. 
Thus, for the study of the stress-strain state of thick slabs and flexible plates, we 

have a general problem of the nonlinear elasticity theory. Due to the difficulties arising 
in solving nonlinear three-dimensional problems (1) - (6), in solid mechanics for the 
applied purposes the three-dimensional problems are usually reduced to two-
dimensional ones. 

 
2. Results and discussion 

Let the Cartesian coordinate system 𝑂𝑥1𝑥2𝑧 [17] be located in the initial plane 

of the slab with the constant thickness h and the surface loads 𝑆𝐼
± at  𝑧 = 𝑥3 = 0; ℎ. 

We expand the displacement into a power series in z: 
𝑈𝐼 = 𝐴𝐼 + 𝑧𝐵𝐼 + 𝑧

2𝐶𝐼 + 𝑧
3𝐷𝐼 +⋯ ,

𝑈𝑧 = 𝑎 + 𝑧𝑏 + 𝑧2𝜃 +⋯ ,
.                       (7) 

where 𝐴𝐼 , 𝐵𝐼 , 𝐶𝐼 , 𝐷𝑖 , … , 𝑎, 𝑏, 𝜃, …,  are the unknown functions of coordinates 𝑥1, 𝑥2  and 
time t. Hereinafter, the indices have the value 1, 2. In order to simplify further 
calculations, we introduce the following integral values of the sought displacements 
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𝑢𝐼 =
1

ℎ
∫ 𝑈𝐼𝑑𝑧
ℎ

0
, 𝑤 =

1

ℎ
∫ 𝑈𝑧𝑑𝑧
ℎ

0
, 𝜓𝐼 =

3

ℎ3
∫ 𝑈𝐼𝑧𝑑𝑧
ℎ

0
, 𝑉 =

3

ℎ3
∫ 𝑈𝑧𝑧𝑑𝑧.
ℎ

0
(8) 

where  𝑢𝐼  are the axial displacements, 𝜓𝐼  are the shear angles of transverse fibers, 
transverse deflection w and parameter of thickness reduction V. 

Substituting (7) into (8) we will have for the unknown coefficients in (7) the 
following expressions 

{
𝐴𝐼 = 4𝑢𝐼 − 2ℎ𝜓𝐼 +

ℎ2

6
𝐶𝐼 +

ℎ3

5
𝐷𝐼

𝐵𝐼 = 4𝜓𝐼 −
6

ℎ
𝑢𝐼 − ℎ𝐶𝐼 −

9ℎ2

10
𝐷𝐼

{
𝑎 = 4𝑤 − 2ℎ𝑉 +

ℎ2

6
𝜃

  𝑏 = 4𝑉 −
6

ℎ
𝑤 − ℎ𝜃

. 

So, the displacements components can be represented as follows 

{
𝑈𝐼 = 4(1 −

3

2
(
𝑧

ℎ
)) 𝑢𝐼 + 2(2𝑧 − ℎ)𝜓𝐼 −

1

2
Ф1(𝑧)𝐶𝐼 −

3ℎ2

5
Ф2(𝑧)𝐷𝐼

𝑈𝑧 = 4(1 −
3

2
(
𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃

               (9) 

where Ф1(𝑧) = −(
ℎ2

3
− 2ℎ𝑧 + 2𝑧2) , Ф2(𝑧) = −(

ℎ

3
−
3𝑧

2
+

5𝑧3

3ℎ2
) , at the same time the 

following relations are met:  

∫ Ф𝐼(𝑧)𝑑𝑧
ℎ

0
= 0,     ∫ Ф𝐼(𝑧)𝑧𝑑𝑧

ℎ

0
= 0,                         (10) 

which can be easily checked.  
The plate bending is accompanied by the predominance of one of the 

components of the displacement vector, namely, the condition 𝑈𝑍 >> 𝑈𝐼 is satisfied, 
i.e. lateral displacement as compared to the rest. 

In this regard, in expressions (1) - (6), the nonlinear terms are usually neglected 
for the longitudinal components of the displacement vector 𝑈𝑖  when plate bending. 
The nonlinear components of the 𝑈𝑍 derivative with respect to the normal z coordinate 
are also assumed to be negligibly small. 

Then the component of the Lagrange strain tensor will have 

𝜀𝐼𝐽 =
1

2
(𝑈𝐼,𝐽 + 𝑈𝐽,𝐼),       𝜀𝐼3 =

1

2
(𝑈𝐼,3 + 𝑈3,𝐼),       𝜀33 = 𝑈3,3.  (11) 

The Boundary conditions (5) can be written in the following form with the 
substitution in indices 3 => z: 

𝜎𝑍𝐼 = 𝑆𝐼
±   for 𝑧 = 0; ℎ  (12) 

𝜎𝑍𝑍 = 𝑆𝑍
± − 𝑈𝑍,𝐼𝑆𝐼

±   for 𝑧 = 0; ℎ  (13) 
The boundary conditions (5) were taken into account in (13). Taking into 

account (9), for elastic isotropic plates, the components of the longitudinal stress 
tensor will have the following form: 

𝜎𝐼𝐽 = 𝜆 {4 (1 −
3

2
(
𝑧

ℎ
)) 𝑢𝐾,𝐾 + 2(2𝑧 − ℎ)𝜓𝐾,𝐾 −

1

2
Ф1(𝑧)𝐶𝐾,𝐾 −

3ℎ2

5
Ф2(𝑧)𝐷𝐾,𝐾 + (−

6

ℎ
𝑤 +

4𝑉 + (2𝑧 − ℎ)𝜃) +
1

2
(4 (1 −

3

2
(
𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃)

’𝐾
(4 (1 −

3

2
(
𝑧

ℎ
))𝑤 +

2(2𝑧 − ℎ)𝑉 −
1

2
Ф1(𝑧)𝜃)

’𝐾
} 𝛿𝐼𝐽 + 𝜇 {4 (1 −

3

2
(
𝑧

ℎ
)) (𝑢𝐼,𝐽 + 𝑢𝐽,𝐼) + 2(2𝑧 − ℎ)(𝜓𝐼,𝐽 + 𝜓𝐽,𝐼) −

1

2
Ф1(𝑧)(𝐶𝐼,𝐽 + 𝐶𝐽,𝐼) −

3ℎ2

5
Ф2(𝑧)(𝐷𝐼,𝐽 + 𝐷𝐽,𝐼) + (4 (1 −

3

2
(
𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃)

’𝐼
(4 (1 −

3

2
(
𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃)

’𝐽
}                     (14) 

The following boundary condition (15) 

𝜎𝑍𝐼 = 2𝜇𝜀𝐼𝑍 = 𝑆𝐼
±                (15) 
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is satisfied because 

[−
6

ℎ
𝑢𝐼 + 4𝜓𝐼 +

ℎ2

6
𝜃’𝐼 +

1

2
((
21

10
∓
9

10
) ℎ2𝐷𝐼 − (2 ∓ 4)𝑤’𝐼)] ± 2ℎ[𝐶𝐼 + 2𝑉’𝐼] =

𝑆𝐼
±

𝜇
 

We introduce new notation 

𝑌𝐼
− =

𝑆𝐼
+−𝑆𝐼

−

ℎ
 и 𝑌𝐼

+ =
𝑆𝐼
++𝑆𝐼

−

2
 

then for 𝑧 = 0; ℎ, we obtain the following    

{
𝐶𝐼 =

𝑌𝐼
−

2𝜇
−
5𝑌𝐼

+

2ℎ𝜇
−
15

ℎ2
𝑢𝐼 +

10

ℎ
𝜓𝐼 +

11

2ℎ
𝑤’𝐼 − 2𝑉’𝐼 +

5ℎ

12
𝜃’𝐼

𝐷𝐼 =
5

3ℎ2
(
𝑌𝐼
+

𝜇
+

6

ℎ
𝑢𝐼 − 4𝜓𝐼 − 𝑤’𝐼 −

ℎ2

6
𝜃’𝐼)

     (15) 

Taking into account (15), the component of the displacement vector can be 
written in the following form 

{
 
 

 
 𝑈𝐼 = (

7

2
− 15 (

𝑧

ℎ
)
2

+ 10 (
𝑧

ℎ
)
3
) 𝑢𝐼 + (−

5ℎ

3
+
10𝑧2

ℎ
−
20𝑧3

3ℎ2
)𝜓𝐼 −

−
1

2
Ф1(𝑧) (

𝑌𝐼
−

2𝜇
−
5𝑌𝐼

+

2ℎ𝜇
+

11

2ℎ
𝑤’𝐼 − 2𝑉’𝐼 +

5ℎ

12
𝜃’𝐼) − Ф2(𝑧) (

𝑌𝐼
+

𝜇
− 𝑤’𝐼 −

ℎ2

6
𝜃’𝐼)

𝑈𝑧 = 4(1 −
3

2
(
𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃

       (16) 

Based on (16) for the normal stress 𝜎𝑍𝑍 , the following expression can be 
obtained 

𝜎𝑍𝑍 =  𝜆 {(
7

2
− 15 (

𝑧

ℎ
)
2

+ 10 (
𝑧

ℎ
)
3
) 𝑢𝐾,𝐾 + (−

5ℎ

3
+
10𝑧2

ℎ
−
20𝑧3

3ℎ2
)𝜓𝐾,𝐾 −

1

2
Ф1(𝑧)𝛥 (

11

2ℎ
𝑤 − 2𝑉 +

5ℎ

12
𝜃) + Ф2(𝑧)𝛥 (𝑤 +

ℎ2

6
𝜃) +

1

2
((4 − 6 (

𝑧

ℎ
))𝑤 + 2(2𝑧 − ℎ)𝑉 −

1

2
Ф1(𝑧)𝜃)

’𝐾

((4 − 6 (
𝑧

ℎ
))𝑤 +

2(2𝑧 − ℎ)𝑉 −
1

2
Ф1(𝑧)𝜃)

’𝐾

+
1−𝜈

𝜈
(−

6

ℎ
𝑤 + 4𝑉 + (2𝑧 − ℎ)𝜃) −

1

2
Ф1(𝑧) (

𝑌𝐼,𝐼
−

2𝜇
−
5𝑌𝐼,𝐼

+

2ℎ𝜇
) − Ф2(𝑧)

𝑌𝐼,𝐼
+

𝜇
}                

(17) 
The boundary condition (13) with taking into account (17) is satisfied when the 
following nonlinear differential equation partial derivatives is fulfilled 

 
(18) 

where =
𝐸ℎ3

12(1+𝜈)
 , 𝐺 =

𝐸ℎ

2(1+𝜈)
 , 𝛥 is the Laplace operator. 

𝑍𝑍
+ =

𝑆𝑧
+ − (−2𝑤’𝑖 + 2ℎ𝑉’𝑖 +

ℎ2

6 𝜃’𝑖
) 𝑆𝑖

+ + 𝑆𝑧
− − (4𝑤’𝑖 +−2ℎ𝑉’𝑖 +

ℎ2

6 𝜃’𝑖
) 𝑆𝑖

−

2
 

𝑍𝑍
− = 𝑆𝑍

+ − (−2𝑤’𝐼 + 2ℎ𝑉’𝐼 +
ℎ2

6
𝜃’𝐼) 𝑆𝐼

+ − 𝑆𝑍
− + (4𝑤’𝐼 +−2ℎ𝑉’𝐼 +

ℎ2

6
𝜃’𝐼) 𝑆𝐼

− 

After satisfying the boundary condition (15) with taking into account (14) and 
(19), we obtain for tangential stresses 
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𝜎𝑧𝑖 = 𝜇 {−
6

ℎ
𝑢𝑖 + 4𝜓𝑖 +𝑤’𝑖} 𝑓(𝑧) +

𝑧𝜇

6
(𝑧 − ℎ)𝜃’𝑖 + 𝑌𝑖

− (𝑧 −
ℎ

2
) + 𝑌𝑖

+(1 − 𝑓(𝑧))     где   

𝑓(𝑧) =
5𝑧

ℎ
(1 −

𝑧

ℎ
)                                    (19) 

The analytical expressions obtained in the geometric nonlinear form (14)-(19) 
for the components of the displacement vector and the Cauchy stress tensor satisfy the 
boundary conditions (12)-(13). 

The components of the displacement vector (19) and the symmetric stress 
tensor depend on the unknown integral quantities 𝑢𝐼 , 𝜓𝐼 , 𝑤, 𝑉, 𝜃 that are the functions 
of the coordinates 𝑥1, 𝑥2  and t. For a closed system with respect to these unknown 
resolving equations to be obtained, the following integral quantities of the stress tensor 

components are introduced into consideration: normal forces  𝑁𝑖𝑗 = ∫ 𝜎𝑖𝑗𝑑𝑧
ℎ

0
, shear 

forces 𝑄𝑖 = ∫ 𝜎𝑖𝑗𝑑𝑧
ℎ

0
, inner bending moments 𝑀𝑖𝑗 = ∫ 𝜎𝑖𝑗𝑧𝑑𝑧

ℎ

0
. 

Substituting the stress tensor components (14)-(19) into the obtained integral 
expressions, we will have 

𝑁𝐼𝐽 = 𝐺 [
2𝜈

(1−2𝜈)
{𝑢𝐾,𝐾 −

6

ℎ
𝑤 + 4𝑉 + 2𝑤’𝐾𝑤’𝐾 +

2ℎ2

3
𝑉’𝐾𝑉’𝐾 +

ℎ4

360
𝜃’𝐾𝜃’𝐾 − 2ℎ𝑤’𝐾𝑉’𝐾} 𝛿𝐼𝐽 +

𝑢𝐼,𝐽 + 𝑢𝐽,𝐼 + 4𝑤’𝐼𝑤’𝐽 +
4ℎ2

3
𝑉’𝐼𝑉’𝐽 +

ℎ4

180
𝜃’𝐼𝜃’𝐽 − 2ℎ𝑤’𝐼𝑉’𝐽 − 2ℎ𝑤’𝐽𝑉’𝐼](20) 

𝑀𝐼𝐽 = 𝐷 [
𝜈

(1−2𝜈)
{4𝜓𝐾,𝐾 −

36

ℎ2
𝑤 +

24

ℎ
𝑉 + 4𝜃 +

6

ℎ
𝑤’𝐾𝑤’𝐾 + 20ℎ𝑉’𝐾𝑉’𝐾 +

ℎ3

60
𝜃’𝐾𝜃’𝐾 −

8𝑤’𝐾𝑉’𝐾 −
2ℎ

5
𝑤’𝐾𝜃’𝐾 +

4ℎ2

15
𝑉’𝐾𝜃’𝐾} 𝛿𝐼𝐽 + 2(𝜓𝐼,𝐽 + 𝜓𝐽,𝐼) +

6

ℎ
𝑤’𝐼𝑤’𝐽 + ℎ𝑉’𝐼𝑉’𝐽 +

ℎ3

60
𝜃’𝐼𝜃’𝐽 +

20𝑤’𝐼𝑉’𝐽 + 20𝑤’𝐽𝑉’𝐼 −
ℎ

5
𝑤’𝐼𝜃’𝐽 −

ℎ

5
𝑤’𝐽𝜃’𝐼 +

2ℎ2

15
𝑉’𝐼𝜃’𝐽 +

2ℎ2

15
𝑉’𝐽𝜃’𝐼](21) 

𝑄𝐼 = 𝐺𝑘2 {−
6

ℎ
𝑢𝐼 + 4𝜓𝐼 + 𝑤’𝐼 −

ℎ2

30
𝜃’𝐼} +

ℎ

6
𝑌𝐼
+,𝑘2 =

5

6
(22) 

The linearized record of normal forces, inner bending moments and shearing forces 
(20), (21), (22) will have the form 

𝑁𝐼𝐽 = 𝐺 [
2𝜈

(1−2𝜈)
{𝑢𝐾,𝐾 −

6

ℎ
𝑤 + 4𝑉} 𝛿𝐼𝐽 + 𝑢𝐼,𝐽 + 𝑢𝐽,𝐼]  (23) 

𝑀𝐼𝐽 = 𝐷 [
𝜈

(1−2𝜈)
{4𝜓𝐾,𝐾 −

36

ℎ2
𝑤 +

24

ℎ
𝑉 + 4𝜃} 𝛿𝐼𝐽 + 2(𝜓𝐼,𝐽 + 𝜓𝐽,𝐼)]   (24) 

𝑄𝐼 = 𝐺𝑘2 {−
6

ℎ
𝑢𝐼 + 4𝜓𝐼 + 𝑤’𝐼 −

ℎ2

30
𝜃’𝐼} +

ℎ

6
𝑌𝐼
+,  𝑘2 =

5

6
   (25) 

It should be noted that the so-called shear coefficient 𝑘2  is determined as a 
consequence of the boundary condition fulfillment for tangential stresses. In the 
improved elasticity theories of the Timoshenko type [13,14,15,16,17], the special 
experiments are carried out to determine this coefficient that is almost 5/6. 

To obtain the equations of motion with taking into account the deformation of 
thick slabs or flexible plates and usually based on the d'Alembert principle for the 
elementary object under consideration, the equations of motion will be constructed by 
the method of projection of all outer and inner forces onto the coordinate ones, in each 
case separately. But in this case, the connection with the three-dimensional equations 
of motion in the theory of elasticity is lost. And these equations are the most accurate 
for slabs. Therefore, for the equations of motion to be obtained for elastic plates, we 
perform the integration procedure (1) taking into account (14) with respect to z within 
the range [0; h]: 
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where 𝑝𝐼 = 𝑆𝐼
+ − 𝑆𝐼

− + ∫ 𝑋𝐼𝑑𝑧
ℎ

0
, 𝑚𝐼 = ℎ𝑆𝐼

+ + ∫ 𝑋𝐼𝑑𝑧
ℎ

0
, are the distributed outer forces 

and moments; 𝑚 = 𝜌ℎ is the running weight. Here, the volume force 𝑋3 is neglected, 
and the density ρ along the thickness is considered to be constant. 

It should be stressed here that in the resulting system of equations of motion 
(26), the first two equations do not formally differ in appearance from the improved 
equations of S.P. Tymoshenko [13]. In this case, the equations of motion (26) with 
taking into account (18) become closed with respect to the following integral 
quantities: 𝑢𝐼 , 𝜓𝐼 , 𝑤, 𝑉, 𝜃. 

At the plate edges there are usually three types of fastening that in terms of 
stresses and displacements can be written as [18] 

На торцах пластин обычно имеют место три типа закрепления, которые в 
терминах напряжений и перемещений можно записать в виде [18] 

I. 𝜎𝐼𝐽𝑛𝐽|𝛴 = 0,  𝑈𝑍|𝛴 = 0    - knuckle joint  

II. 𝑈𝐼|𝛴 = 0,  𝑈𝑍|𝛴 = 0 - hard pinching                     (27) 

III. 𝜎𝐼𝐽𝑛𝐽|𝛴 = 0,  𝜎𝑍𝐼|𝛴 = 0 - free edge 

The above boundary conditions, in terms of integral quantities, are written in 
the following form, respectively, [19,20] 

I. 𝑁𝐼𝐽𝑛𝐽|𝛴 = 0,𝑀𝐼𝐽𝑛𝐽|𝛴 = 0,𝑤
|𝛴 = 0, 𝑉|𝛴 = 0, 𝜃|𝛴 = 0 

II. 𝑢𝐼|𝛴 = 0,𝜓𝐼|𝛴 = 0,𝑤|𝛴 = 0, 𝑉|𝛴 = 0, 𝜃|𝛴 = 0                        (28) 

III. 𝑁𝐼𝐽𝑛𝐽|𝛴 = 0,𝑀𝐼𝐽𝑛𝐽|𝛴 = 0, 𝑄𝐼𝑛𝐼
|𝛴 = 0, 𝑉’𝐼𝑛𝐼|𝛴 = 0, 𝜃’𝐼𝑛𝐼|𝛴 = 0 

In the boundary conditions obtained for the first two types, there is no normal 
displacement at the edges of the slab; therefore, for 𝑉, 𝜃 the basic boundary conditions 
are satisfied; for the third type it is assumed in (28) that there is no gradient for 
compression along the free slab edges. It should be noted that the typical boundary 
conditions are formulated here. Other types of boundary conditions can be obtained 
either by a linear combination of the above conditions or formulated in each case 
separately. The initial conditions (2) with taking into account (16) can be written in a 
similar way in terms of integral quantities. 

Neglecting the nonlinear terms in expressions (1)-(19), we will have a linear 
theory of slabs for which a system of the resolving equations will be as follows 

(29) 
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Hereinafter, we assume that only the transverse surface load acts 𝑆𝑍
+ = 𝑞(𝑥1, 𝑥2, 𝑡), 

𝑆𝑍
− = 𝑆𝐼

± = 0, и 𝑝𝐼 = 𝑚𝐼 = 0. Then, introducing the potentials 𝑢𝐼 = 𝑢’𝐼, 𝜓𝐼 = 𝜓’𝐼 instead 
of (29), we will have the following system of five differential equations in partial 
derivatives 

{
 
 
 
 

 
 
 
 𝐺 [∆𝑢 −

𝜈

1−𝜈
(
6

ℎ
𝑤 − 4𝑉)] −

1−2𝜈

2(1−𝜈)
𝑚𝑢̈ = 0

2𝐷 [∆𝜓 −
𝜈

1−𝜈
(
9

ℎ2
𝑤 −

6

ℎ
𝑉 − 𝜃)] +

1−2𝜈

2(1−𝜈)
𝐺𝑘2 {

6

ℎ
𝑢 − 4𝜓 − 𝑤 +

ℎ2

6
𝜃} −

1−2𝜈

1−𝜈

ℎ2

6
𝑚𝜓̈ = 0

𝑘2𝐺∆ {4𝜓 −
6

ℎ
𝑢 + 𝑤 −

ℎ2

6
𝜃} + 𝑞 −𝑚𝑤̈ = 0

𝐷𝛥𝑉 −
1

2
𝐺 (𝛥 (𝑢 +

ℎ

2
𝑤) −

1−𝜈

𝜈
(
6

ℎ
𝑤 − 4𝑉)) +

(1−2𝜈)

8𝜈
𝑞ℎ = 0

𝐷𝛥𝜃 − 𝐺𝛥 (
30

ℎ
𝑢 − 20𝜓 + 𝑤) − 12𝐺

1−𝜈

𝜈
𝜃 +

3(1−2𝜈)

𝜈
𝑞 = 0

(30) 

The system of equations (30) can be further applied as a recurrence relation for 
solving the problem of the equilibrium of an inhomogeneous plate with an arbitrary 
number of layers. 
 
Conclusions 

1. This work is devoted to constructing a modified non-classical theory of plates 
without preliminary hypotheses about the distribution of the displacement vector 
and strain tensor on the basis of three-dimensional equations of the nonlinear 
theory of elasticity. 

2. The main difference of this work from the well-known works of the non-classical 
theory of elasticity is that a three-dimensional deformable body with a constant 

thickness h and surface loads 𝑆𝐼
± for 𝑧 = 𝑥3 = 0; ℎ has been considered.  

3. The proposed approach is applicable to deformation of layered plates and shallow 
shells of non-canonical shape. A recurrent relationship has been obtained; it will 
be further used in determining the ratios of interlayer variables in layered 
composites.  
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