A Peer Reviewed, Open Access, International Journal www.scienticreview.com ISSN (E): 2795-4951

Volume 21, November 2023

Solution In Degenerate Ordinary Systems Of Differential Equations By The Differential Sweep Method

Abdujabbor Abdurazakov

Candidate of Physical and Mathematical Sciences, Docent, Department of Higher Mathematics, Fergana Polytechnic Institute, Fergana, Uzbekistan **Nasiba Maxmudova** Fergana Polytechnic Institute, Fergana, Uzbekistan

E-mail: <u>maxmudovanasibaxon1974@gmail.com</u>

Abstract

In this article, we consider a system of degenerate ordinary differential equations. A calculation method using simple factorization is proposed. The existence of a solution to the boundary value problem is proved, an algorithm for friction of the problem is constructed, and a uniform estimate for the solution is obtained using the maximum principle method.

Keywords: continuous functions, boundary value problem, factorization, maximum principle.

Introduction

Some problems of gas and liquid filtration in a three-layer reservoir are reduced to solving boundary value problems for systems of degenerate differential equations [1]. Consider a boundary value problem for a system of degenerate differential equations of the form:

$$\begin{cases} \frac{1}{m(x)} \frac{d}{dx} (K(x) \frac{du}{dx}) = a(x)u + b(x) + \sum_{i=1}^{2} A_{i}(x) K_{i}(z) \frac{\partial u_{1}}{\partial z} \Big|_{z=1} \\ \frac{1}{m_{i}(z)} \frac{\partial}{\partial z} (K_{i}(z) \frac{\partial u_{i}}{\partial z}) = a_{i}(z)u_{i}(x,z) + b_{i}(x,z) \end{cases}$$
(1)

In area $\Omega = \{0 < x < 1, 0 < z < 1\}$

Here $K(x), m(x), A_i(x), K_i(z), m_i(z), a_i(z)$ - given functions on the segment [0,1], $b_1(x, z)$ are given functions in $\overline{\Omega}$, and $K(x), m(x), a_i(z), a(x) > K_0(0)$ $K_i(0) = 0, K_i(z)$ and $m_i(z)$ are positive for z > 0.

The boundary conditions have the form

Volume 21, November 2023

$$\left| \begin{array}{l} \gamma_{0}K(x)\frac{du}{dx} \Big|_{x=0} - \alpha_{0}u \Big|_{x=0} - \beta_{0} = 0 \\ \gamma_{1}K(x)\frac{du}{dx} \Big|_{x=1} - \alpha_{1}u \Big|_{x=1} - \beta_{1} = 0 \\ \gamma_{1i}K_{i}(z)\frac{du_{i}}{dz} \Big|_{z=0} - \alpha_{1i}u_{i} \Big|_{z=0} - \beta_{1i} = 0 \\ \text{if } g_{i}(0) < +\infty \\ u(x) = u_{i}(x,1), \ i = 1,2 \end{array} \right|$$

$$(2)$$

If $g_i(0) < +\infty$, and $\sigma_i(0) < +\infty$ then the condition for z = 0 is replaced by the condition $|u_i(x, z)|_{z=0} | < +\infty, i = 1, 2$.

Here

$$\gamma_k + \alpha_k \neq 0 \ k = 0,1; \ \gamma_{1i} + \alpha_{1i} \neq 0, \ i = 1,2$$

$$g_i(z) = \int_0^1 \frac{d\xi}{K_i(\xi)}, \quad \sigma_i(z) = \int \frac{\int_0^0 m_i(\xi) d\xi}{K_i(\eta)} d\eta$$

To prove the existence of a solution to the considered boundary value problem, we need the following:

Lemma 1.1. Let $K_i(z)$, $m_i(z)$, $a_i(z) \in [0,1]$, $a_i(z) \ge a_{i0} > 0$, $K_i(0) = 0$ and $m_i(z)$ be positive. Then [0,1] there is a unique continuous solution of the equation on the interval $\frac{1}{m_i(z)} \frac{d}{dz} (K_i(z) \frac{dV_i}{dz}) = a_i(z)V_i(z)$, i = 1,2 satisfying one of the initial conditions:

$$V_i|_{z=0} = h_1, K_i(z) \frac{dV_i}{dz} = \mu_i$$
. If $g_i(0) < +\infty$ (4). If $g_i(0) < +\infty$, a $\sigma_1(0) < +\infty$ then $V_i|_{z=0} = h_1$, $i = 1, 2$. Here are μ_i, h_i $(i = 1, 2)$ some constants.

Proof. Consider the case $g_i(0) < +\infty$

It is easy to see that problems (3), (4) are equivalent to the system of integral equations

$$V_{i}(z) = h_{1} + \mu_{1} \int_{0}^{z} \frac{d\xi}{K_{i}(\xi)} + \int_{0}^{z} \frac{\int_{0}^{\zeta} m_{i}(\eta) a_{i}(\eta) V_{i}(\eta) d\eta}{K_{i}(\xi)} d\xi$$

Using the contraction mapping principle, let us show the unique solvability of the system of integral equations (5) in the class of two-component vector functions.

$$\overline{\sigma}_i(z) = \int_0^z \frac{\int_0^{\zeta} m_i(\eta) a_i(\eta) V_i(\eta) d\eta}{K_i(\xi)} d\xi, \quad i = 1,2$$

It is easy to see that the conditions of the lemma ensure the continuity and monotonicity of the function $\overline{\sigma}_i(z)$. Obviously, $\overline{\sigma}_i(0) = 0$ therefore, it is possible to

Volume 21, November 2023

choose $\delta \in (0,1)$ such that $\overline{\sigma}_i(\delta) < 1$. Let us denote $\overline{\Omega}_{\delta} = [0, \delta]$ and introduce into consideration the complete space of two-component continuous vector functions $C\overline{\Omega}_{\delta}$. In space, $C\overline{\Omega}_{\delta}$ consider the image

$$AV_{i}(z) = h_{1} + \mu_{1} \int_{0}^{z} \frac{d\xi}{K_{i}(\xi)} + \int_{0}^{z} \int_{0}^{\xi} \frac{m_{i}(\eta)a_{i}(\eta)V_{i}(\eta)d\eta}{K_{i}(\xi)} d\xi$$

Let us show that A translates $C\overline{\Omega}_{\delta}$ into itself. Let $\{V_1(z), V_2(z)\} \in C\overline{\Omega}_{\delta}$ then $z_1, z_2 \in C\overline{\Omega}_{\delta}$ the estimate

$$\left|AV_{i}(z_{2}) - AV_{i}(z_{i})\right| \leq \mu_{i} \left|\int_{z_{1}}^{z_{2}} \frac{d\xi}{K_{i}(\xi)}\right| + \max_{i} \left|V_{i}(z_{2}) - V_{i}(z_{1})\right| \cdot \left|\overline{\sigma}_{i}(z_{2}) - \overline{\sigma}_{i}(z_{1})\right|$$

Due to the continuity of the functions $\overline{\sigma}_i$ and the convergence of the integrals $\int_{0}^{\delta} \frac{dz}{K_i(z)}$

from $z_1 \to z_2$ follows $AV_i(z_1) \to AV_i(z_2)$ i.e. $\{AV_1(z), AV_2(z)\} \in C(\overline{\Omega}_{\delta})$ Similarly, we have

$$\left|AV_{i}(z) - A\widetilde{V}_{i}(z)\right| \leq \max_{z \in \Omega_{\delta}} \left|V_{i}(z) - \widetilde{V}_{i}(z)\right| \overline{\sigma}_{i}(\delta)$$

From there, by virtue of inequalities $\overline{\sigma}_i(\delta) < 1$, the contraction of the mapping A follows. From here, by virtue of the Banach fixed point theorem, it follows that the system of equations (5) has a unique solution in the space $C\overline{\Omega}_{\delta}$. Due to the linearity of the equations and the fact that the coefficients of problem (3), (4) do not have [0,1] singularities on the segment, this solution can be extended continuously to the segment.

The case is considered similarly $g_i(0) < +\infty$, $\sigma_i(0) < +\infty$. In this case, the relation

 $\lim_{z \to 0} K_i(z) \frac{dV_i}{dz} = 0$

The validity of which is easy to obtain from the requirement that the solution be bounded $V_i(z)$.

Lemma 2. Let the conditions of Lemma 1 be satisfied, moreover, $a(x), b(x), A_i(x), K(x), m(x) \in C[0,1], b_1(x, z) \in C(\overline{\Omega})$. Then there is a unique solution of the system of equations (1) that satisfies conditions (2) and is continuous together with

the derivatives
$$\frac{d}{dx}K(x)\frac{du}{dx}b(0,1)$$
 And $\frac{1}{m_i(z)}\frac{\delta}{\delta_z}(K_i(z)\frac{\delta u_i}{\delta_z})$

In area Ω this solution can be constructed using the differential sweep method. Proof. Let's build functions

$$\alpha_{1}(z) = \frac{1}{V_{i}(z)} \left(\frac{\alpha_{1i}}{\gamma_{1i}} + \int_{0}^{z} m_{i}(\xi) a_{i}(\xi) V_{i}(\xi) d\xi\right)$$
(6)
$$\beta_{1}(x, z) = \frac{1}{V_{i}(z)} \left(\frac{\beta_{1i}}{\gamma_{1i}} + \int_{0}^{z} m_{i}(\xi) b_{i}(x, \xi) V_{i}(\xi) d\xi\right),$$
(7)

Where is $V_i(z)$ the solution of problem (3), (4), where

A Peer Reviewed, Open Access, International Journal

Volume 21, November 2023

$$\mu_{i} = \frac{\alpha_{1i}}{\gamma_{1i}}, \quad h_{1} = 1, \quad i = 1, 2$$

From (3), (4) we easily obtain
$$K_{i}(z) \frac{dV_{i}}{dz} = \frac{\alpha_{1i}}{\gamma_{1i}} + \int_{0}^{z} m_{i}(\xi)a_{i}(\xi)V_{i}(\xi)d\xi \qquad (8)$$

Comparing (6) and (8), we obtain the relation

$$\alpha_i(z) = \frac{K_i(z)\frac{dV_i}{dz}}{V_i(z)}$$
(9)

Ras c look functions

$$\alpha(x) = \frac{1}{V(x)} \left[\frac{\alpha_0}{\gamma_0} + \int_0^x \left[\alpha(\xi) + \sum_{i=1}^2 A_i(\xi) \alpha_i(1) \right] \right] m(\xi) V(\xi) d\xi$$
$$\beta(x) = \frac{1}{V(x)} \left[\frac{\alpha_0}{\gamma_0} + \int_0^x \left[b(\xi) + \sum_{i=1}^2 A_i(\xi) \alpha - \beta_i(1) \right] \right] m(\xi) V(\xi) d\xi$$

Where V(x) solution of the Cauchy problem

$$\frac{1}{m(x)}\frac{d}{dx}(K(x)\frac{dV}{dx}) = \left[a(x) + \sum_{i=1}^{2} A_i(x)\alpha_i(1)\right]V(x)$$

$$V(0) = 1, \quad K(x)\frac{du}{dx}\Big|_{x=0} = \frac{\alpha_0}{\gamma_0}$$
(12)

It is easy to prove that problem (12) has a continuous monotone unique solution, since $\alpha_1(1) > 0$. It is easy from (10), (12) to obtain the relation

$$\alpha(x) = \frac{K(x)\frac{dV}{dx}}{V(x)}$$
(13)

Let us now construct the functions u(x) And $u_i(x, z)$ using formulas

$$u(x) = \frac{V(x)}{V(1)} (u(1) - \int_{x}^{1} \frac{\beta(\xi)V(1)}{K(\xi)V(\xi)} d\xi) (14)$$

$$u_{i}(x, z) = \frac{V_{i}(x)}{V_{i}(1)} (u(x) - \int_{x}^{1} \frac{\beta_{i}(x, \xi)V_{i}(1)}{K_{i}(\xi)V_{i}(\xi)} d\xi) (15)$$

We have $u(x, 1) = u(x)$

Where u(x,1) = u(x)

$$u(1) = -\frac{\beta_i + \gamma_i \beta(1)}{\alpha_i + \gamma_i \alpha(1)}$$
(16)

Let us now show the continuity u(x,1) and u(x)

From Lemma 1 it follows that $V_i(z)$ does not decrease on the interval [0,1] and therefore, then from (6), (7) it follows that the functions $V_i(z) \ge 1$ and $\beta_1(x, z) \beta_i(x, z)$ are continuous $\alpha_1(z) \alpha_i(z)$ for z > 0, from (14) it follows that u(x) is continuous for $x \in [0,1]$. Then it follows from (15) that is $u_i(x, z)$ continuous in the domain $(0,1] \times (0,1]$.

(10)Global Scientific Review

www.scienticreview.com

ISSN (E): 2795-4951

A Peer Reviewed, Open Access, International Journal www.scienticreview.com ISSN (E): 2795-4951

Volume 21, November 2023

To $u_i(x,z)$ be continuous in the domain Ω , it suffices to prove the uniform convergence of the integral

$$\int_{0}^{1} \frac{\beta_{i}(x,\xi)}{K_{i}(\xi)V_{i}(\xi)} d\xi$$
(17)

In the case under consideration, the uniform convergence of the integral (17) is obvious (because $g_i(0) < +\infty$), hence $u_i(x, z)$ it is continuous in the region $\overline{\Omega}$

Applying the maximum principle, we obtain the uniform estimate

$$\left\{ u(x); u_i(x,z) \right\} \le \max\left\{ \left| \frac{a(x)}{b(x)} \right|; \max_2 \left| \frac{\alpha_i(z)}{b_i(x,z)} \right| \right\}$$

Numerical solution of nonlinear filtering problems using the method of straight lines in a variable t the original problem is replaced by a differential-difference problem. To solve the differential-difference problem, an iteration method is proposed, as a result we get a system of ordinary differential equations. It was possible to obtain modernized versions of the differential sweep method in relation to the problems under consideration.

Literature:

- 1. Mukhiddinov N. Gas-hydrodynamic study of non-linear filtration of liquid and gas. Ed. " Fan ", Tashkent. 1977.
- 2. Baklanovskaya G.I. Investigation of the grid method for parabolic equations with degeneration. ZhVM i MF, 1977, 17, No. 6.
- 3. Abdurazakov A. Convergence of the method of lines for integral-differential equations. Collection "Computational Mathematics and Mathematical Physics", 1979, 8, Moscow State Pedagogical Institute.
- 4. Абдуразаков, А., Махмудова, Н. А., & Мирзамахмудова, Н. Т. (2022). Об одном численном решении краевых задач для вырождающихся параболических уравнений имеющие приложении в теории фильтрации. Universum: технические науки, (5-1 (98)), 41-45.
- 5. Абдуразаков, А., Махмудова, Н., & Мирзамахмудова, Н. (2019). Решения многоточечной краевой задачи фильтрации газа в многослойных пластах с учетом релаксации. *Universum: технические науки*, (11-1 (68)), 6-8.
- 6. Abdurazakov, A., Makhmudova, N., & Mirzamakhmudova, N. (2021). On one method for solving degenerating parabolic systems by the direct line method with an appendix in the theory of filration. *European Journal of Research Development and Sustainability*, *2*(5), 138-140.
- 7. Abdujabbor, A., Nasiba, M., & Nilufar, M. (2022). Semi-discretization method for solving boundary value problems for parabolic systems. *Texas Journal of Multidisciplinary Studies*, *13*, 77-80.