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Abstract 
In this article, we consider a system of degenerate ordinary differential equations. A 
calculation method using simple factorization is proposed. The existence of a solution 
to the boundary value problem is proved, an algorithm for friction of the problem is 
constructed, and a uniform estimate for the solution is obtained using the maximum 
principle method. 
 
Keywords: continuous functions, boundary value problem, factorization, maximum 
principle. 
 
Introduction 
Some problems of gas and liquid filtration in a three-layer reservoir are reduced to 
solving boundary value problems for systems of degenerate differential equations [1]. 
Consider a boundary value problem for a system of degenerate differential equations 
of the form: 
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In area  10,10 = zx  

Here )(),(),(),(),(),( zazmzKxAxmxK iiii - given functions on the segment ),(],1,0[ 1 zxb

are given functions in  , and )(,0)0()0()(),(),(),( 0 zKKKxazaxmxK iii = and 

)(zmi are positive for 0z . 

The boundary conditions have the form 
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If (0)ig  + , and (0)i  + then the condition for 0z = is replaced by the condition 
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To prove the existence of a solution to the considered boundary value problem, we 
need the following: 

Lemma 1.1. Let ]1,0[)(),(),( zazmzK iii , 0)0(,0)( 0 = iii Kaza and )(zmi be 

positive . Then ]1,0[ there is a unique continuous solution of the equation on the 

interval 2,1),()())((
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satisfying one of the initial conditions: 
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Proof. Consider the case +)0(ig  

It is easy to see that problems (3) , (4) are equivalent to the system of integral equations 
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Using the contraction mapping principle, let us show the unique solvability of the 
system of integral equations (5) in the class of two-component vector functions. 
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It is easy to see that the conditions of the lemma ensure the continuity and 

monotonicity of the function )(zi . Obviously, 0)0( =i therefore, it is possible to 
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choose )1,0( such that 1)(  i . Let us denote ],0[  = and introduce into 

consideration the complete space of two-component continuous vector functions C . 

In space, C consider the image 
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Let us show that A translates C into itself. Let CzVzV )}(),({ 21 then Czz 21 ,

the estimate 
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Due to the continuity of the functions i and the convergence of the integrals 
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Similarly, we have 
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From there, by virtue of inequalities 1)(  i , the contraction of the mapping A 

follows. From here, by virtue of the Banach fixed point theorem, it follows that the 

system of equations (5) has a unique solution in the space C . Due to the linearity of 

the equations and the fact that the coefficients of problem (3), (4) do not have ]1,0[

singularities on the segment, this solution can be extended continuously to the 
segment. 

The case is considered similarly ++ )0(,)0( iig  . In this case, the relation
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The validity of which is easy to obtain from the requirement that the solution be 

bounded )(zVi . 

Lemma 2. Let the conditions of Lemma 1 be satisfied, moreover, 
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In area this solution can be constructed using the differential sweep method. 
Proof. Let's build functions 
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Where is )(zVi the solution of problem (3), (4), where 
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From (3), (4) we easily obtain 
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Comparing (6) and (8), we obtain the relation 
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Where )(xV solution of the Cauchy problem 
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It is easy to prove that problem (12) has a continuous monotone unique solution, since 

1 (1) 0  . It is easy from (10) , (12) to obtain the relation 
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Let us now construct the functions ( )u x And ( , )iu x z using formulas 
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Let us now show the continuity ( ,1)u x and ( )u x  

From Lemma 1 it follows that )(zVi does not decrease on the interval ]1,0[ and 

therefore , then from (6), (7) it follows that the functions 1)( zVi and ),(),(1 zxzx i

are continuous )()(1 zz i for 0z , from (14) it follows that )(xu is continuous for 

]1,0[x . Then it follows from (15) that is ),( zxu i continuous in the domain ]1,0(]1,0(  . 
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To ),( zxu i be continuous in the domain  , it suffices to prove the uniform 

convergence of the integral 
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In the case under consideration, the uniform convergence of the integral (17) is 

obvious (because +)0(ig ), hence ),( zxu i it is continuous in the region  

Applying the maximum principle, we obtain the uniform estimate 
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Numerical solution of nonlinear filtering problems using the method of straight lines 
in a variable t the original problem is replaced by a differential-difference problem. To 
solve the differential-difference problem, an iteration method is proposed, as a result 
we get a system of ordinary differential equations. It was possible to obtain 
modernized versions of the differential sweep method in relation to the problems 
under consideration. 
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