
Global Scientific Review 
A Peer Reviewed, Open Access, International Journal 

www.scienticreview.com 
Volume 17, July 2023 ISSN (E): 2795-4951 

 
22 

Edge of intrinsic absorption of light in a 
quantized semiconductor wire 

 
Ibadullaeva Z.Q.,  

Professor of the Department of Natural Sciences, Samarkand Branch of the Tashkent 
University of Information Technologies named after Muhammad al-Khwarizmi, 

Uzbekistan 
Eshpulatov B.E., 

Assistant teacher of the Department of Software Engineering, Samarkand Branch of 
the Tashkent University of Information Technologies named after Muhammad al-

Khwarizmi, Uzbekistan 
Ubaydullaev M.Sh. 

Student of the Samarkand branch of the Tashkent University of Information 
Technologies named after Muhammad al- Khwarizmi, Uzbekistan 

 
Abstract: The Coulomb interaction of an electron and a hole in the plane of the cross 
section of a cylindrical wire into exciton states is considered. The energy spectrum of 
the Wannier-Mott exciton in a semiconductor wire in the presence of dimensional 
quantization is calculated. An expression is obtained and analyzed for the interband 
light absorption coefficient taking into account exciton effects. It is shown that the 
interaction of an electron and a hole leads to the appearance of new lines in the 
absorption spectrum. 
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I. Related Work 
In the last decade in the physics of semiconductors, there has been a sharp turn of 
interests towards lower-dimensional heterosystems. These include the so-called 
quantum wells, quantum wires and quantum dots, as well as transition states between 
them [1]. Advances in low-dimensional heterosystems led to the start of research work 
on the study of light absorption in a quantized semiconductor wire. 
 
II. Introduction 
By changing the dimension and adjusting the quantum confinement, one can radically 
change the energy spectrum of the system, which contributes not only to the solution 
of fundamental problems of quantum mechanics and physics of semiconductor 
crystals, but also to the creation of completely new semiconductor devices (by the way, 
also optimization of the known ones). There was appearance of lasers, photodetectors 
and optical transistors, built on the properties of an exciton gas [2,3]. 
For the first time, a one-dimensional (1D) hydrogen-like impurity atom was 
considered in [4]. 
Theoretically [5–8] and experimentally [9–13], the behavior of excitons in 
dimensionally quantized semiconductor wires was studied. The features of the energy 
spectrum of electrons and holes and their density of states, the formation of exciton 
states, an increase in the oscillator strength, binding energy, and stabilization of 
excitons with a decrease in the dimension of the system are studied. 



Global Scientific Review 
A Peer Reviewed, Open Access, International Journal 

www.scienticreview.com 
Volume 17, July 2023 ISSN (E): 2795-4951 

 
23 

In this work, we determine the energy spectrum and wave functions of a one-
dimensional (1D) exciton and study the effect of excitons on the intrinsic absorption 
edge of a cylindrical-shaped quantized semiconductor wire (QSW). 
Semiconductors with a parabolic dispersion law are considered, the bands are 
considered non-degenerate, the temperature is quite low, so that the valence band is 
completely filled, and the conduction band is empty. The dielectric constant of the 
semiconductor is assumed to be large, and the effective masses of current carriers are 
small, which is necessary for the existence of a large radius exciton. The potential 
barrier at the interface between the semiconductor wire and the environment is 
assumed to be infinitely large. It is also neglected by the influence of the forces of the 
electrostatic image of electrons and holes. 
 
III. The Wave Function And Exciton Energy 
 
Suppose that 
𝑟0 ≪ а𝐵

∗ ,                                                              (1) 
holds 
where а𝐵

∗ = 𝜀ℏ2 𝜇𝑒2⁄  - Bohr radius of the exciton, 𝜀- semiconductor dielectric constant, 
𝑒 - electron charge, 𝜇 - given effective mass of an electron and a hole, 𝑟0 - QSW radius. 
If in (1) we replace 𝑟0 with the radius of the cyclotron orbit in a magnetic field, then 
criterion (1) will correspond to the condition of applicability of the adiabatic 
approximation when considering the Coulomb coupled pair, when the particle motion 
in a magnetic field is considered to be fast compared to the motion in the Coulomb 
field [14]. In accordance with this condition, for a hydrogen-like system in a strong 
magnetic field, the method of separation of variables was used in [15]. When relation 
(1) is fulfilled, the movement normal to the wire cross section (along the z axis) can be 
considered fast compared to the movement in the wire cross section plane (in the oxy 
plane). Then, separating the variables of the fast and slow subsystems, we obtain, 
similarly to [7–8], for the wave function Ψ and the energy of the one-dimensional (1D) 
exciton E  
 
𝛹(𝒓⃗ 𝑒 , 𝒓⃗ ℎ, 𝑧, 𝑍) = 𝜓(𝒓⃗ 𝑒)𝜓(𝒓⃗ ℎ)𝜙𝑛(𝑧, 𝑍),                              (2)  
 
                                           𝐸 = 𝐸𝑔 + 𝐸𝑒 + 𝐸ℎ + 𝐸𝑧,                                              

(3) 
where 

𝜓(𝒓⃗ 𝑒(ℎ)) = [1 √𝜋⁄ 𝑟0𝐽𝑙𝑒(ℎ)+1(𝜆𝑛𝑒(ℎ),𝑙𝑒(ℎ)
)] 𝑒𝑖𝑙𝑒(ℎ)𝜑𝐽𝑙𝑒(ℎ)

[𝜆𝑛𝑒(ℎ),𝑙𝑒(ℎ)
(𝑟𝑒(ℎ) 𝑟0)]⁄        

 (4)  
 

                                           𝐸𝑒(ℎ) = ℏ2𝜆𝑛𝑒(ℎ),𝑙𝑒(ℎ)

2 2𝑚𝑒(ℎ)𝑟0
2⁄ ,                                   

(5) 
 
 
𝐸𝑔 - semiconductor band gap; 𝑚𝑒(ℎ)- effective mass of an electron (hole); 𝜆𝑛𝑒(ℎ),𝑙𝑒(ℎ)

- 

zeros of the Bessel function, i.e. 
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                                                      𝐽𝑙𝑒(ℎ)
(𝜆𝑛𝑒(ℎ),𝑙𝑒(ℎ)

) = 0,                                      

(6) 
 
𝑛𝑒(ℎ)- the ordinal number of the root of the Bessel function for a given 𝑙𝑒(ℎ). 
 
Table 1. Zeros of the Bessel Function 

𝜆𝑛∗,𝑙 

𝑛∗ l =0, s l = 1, p l = 2, d l = 3, f 

1 2,405 3,832 5,136 6,380 
2 5,520 7,016 8,417 9,761 
3 8,654 10,173 11.620 13,015 
4 11,792 13,324   

 
We represent the function 𝜙𝑛(𝑧, 𝑍) in the form 
 

                                                 𝜙𝑛(𝑧, 𝑍) = 𝑒𝑖𝒦𝑍𝜒𝑛(𝑧),                                            
(7) 
 
 
where 𝒦 - the wave vector characterizing the translational motion of the center-mass 
of the exciton, 𝑍 - coordinate of the center-mass of the exciton. 
𝜒𝑁(𝑧) is a solution to the following equation 
 

                          [−
ℏ2

2𝜇

𝜕2

𝜕𝑧2 + 𝑉𝑒𝑓𝑓
𝑛𝑒,𝑙𝑒;𝑛ℎ,𝑙ℎ(𝑧)] 𝜒𝑛(𝑧) = 𝐸𝑧

′𝜒𝑛(𝑧),                   

(8) 
 
where  
𝐸𝑧

′ = 𝐸𝑧 − ℏ2𝒦2 2𝑀⁄ , 𝑀 = 𝑚𝑒 + 𝑚ℎ - effective mass of the exciton.           (9) 
 

𝑉𝑒𝑓𝑓
𝑛𝑒,𝑙𝑒;𝑛ℎ,𝑙ℎ(𝑧) = −(𝑒2 𝜀𝜋2𝑟0

4⁄ )[𝐽𝑙𝑒+1
2 (𝜆𝑛𝑒,𝑙𝑒)𝐽𝑙ℎ+1

2 (𝜆𝑛ℎ,𝑙ℎ)]
−1

× 

         ∫ 𝑑𝜑𝑒 ∫ 𝑑𝜑ℎ ∫ 𝑟𝑒𝑑𝑟𝑒
𝑟0
0

2𝜋

0

2𝜋

0
∫ 𝑟ℎ𝑑

𝑟0
0

𝑟ℎ
|𝐽𝑙𝑒[𝜆𝑛𝑒,𝑙𝑒

(𝑟𝑒 𝑟0⁄ )]|
2
|𝐽𝑙ℎ

[𝜆𝑛ℎ,𝑙ℎ
(𝑟ℎ 𝑟0⁄ )]|

2

√𝑟𝑒
2+𝑟ℎ

2+𝑧2−2𝑟𝑒𝑟ℎ𝑐𝑜𝑠(𝜑𝑒−𝜑ℎ)
,    

  (10) 
 
The numerical solution of equation (8) was performed in [8]. To obtain an analytical 
solution to equation (8), the effective  
potential can be approximated by the following expression [4,7] 
 

                                                 𝑉𝑒𝑓𝑓(𝑧) = −
𝑒2

𝜀(|𝑧|+𝑧0)
.                                            (11) 

 
Substituting (11) into (8), after certain mathematical transformations, we obtain 
 

                                               
𝜕2𝜒𝑛

𝜕𝑢2 + (
𝜘𝑛

𝑢
−

1

4
) 𝜒𝑛 = 0.                                      

(12) 
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where                                   
𝑢 = 2(|𝑧| + 𝑧0)/а𝐵

∗ 𝜘𝑛; 
 
For the self-energies of the bound state (discrete) exciton, we obtain 
 
                                         𝐸𝑧 = ℏ2𝒦2 2𝑀⁄ − 𝑅𝑦 𝜘𝑛

2⁄ ,                                (13) 
 
where 𝑅𝑦 = 𝜇𝑒4 2𝜀2ℏ2⁄  - Rydberg effective constant. 
The solution of the one-dimensional equation (12) is well known and is given by the 
Whittaker functions: 
 
                                      𝜒𝑛(𝑧) = 𝐶𝑛𝑊𝜘𝑛,1 2⁄

[2(|𝑧| + 𝑧0)/а𝐵
∗ 𝜘𝑛].            

 (14) 
 
where 𝐶𝑛 - normalization multiplier, 𝑊𝜘𝑛,1 2⁄

(𝑧) – Whittaker function. 

Due to the invariance of the potential 𝑉eff(𝑧) with respect to the transformation 𝑧 →
−𝑧, the eigenfunctions are divided into even odd ones, and the eigenvalues of the 
energy (𝜘𝑁) are determined from the equations [4] 
 
             𝑊𝜘𝑛,1 2⁄

(2𝑧0 а𝐵
∗ 𝜘𝑛⁄ ) = 0        for odd states,                    (15) 

 
             𝑊

𝜘𝑛,1 2⁄
′ (2𝑧0 а𝐵

∗ 𝜘𝑛⁄ ) = 0.        for even states.                           (16) 

 
Using the expansion of the Whittaker function at 𝑧0 ≪ 𝑎0 [16], from conditions (14) 
and (15) we obtain the following expressions [8]: 
 
         𝜘𝑛

− = 𝑛 + 2𝑧0 а𝐵
∗⁄            for odd states,                      (17) 

 
                      𝜘𝑛

+ = 𝑛 − 1 ln⁡(2𝑧0 𝑛а𝐵
∗⁄ )⁄     for even states.                      (18)  

 
where 𝑛 = 1, 2, 3,⁡⁡⁡.⁡⁡.⁡⁡. correspond to the excited states of the exciton. The ground state 
(𝑛 = 0) of the 1D exciton has a special character. For this state, 𝜘0 satisfies the equation 
 
                                    𝑙𝑛(2𝑧0 а𝐵

∗ 𝜘0⁄ ) + (1 2𝜘0⁄ ) = 0.                                    
(19) 
 
As 𝑧0 → 0 and 𝜘0 → 0. In this case, the binding energy of the ground state in the 1D 
case is infinite and corresponds to the incidence of the particle on the center. But at 
finite 𝑧0, the ground state energy becomes finite, and double degeneracy is removed so 
that the excited levels of a one-dimensional exciton with 𝑛 = 1, 2, 3, …⁡⁡ turn out to be 
doublets, and transitions are allowed only to even components of these doublets. 
When 𝑧0 → 0 (except the ground state) for coupled even and odd states, respectively, 
with 𝜘𝑁

+ = 𝜘𝑁
− = 𝑛 = 1, 2, 3, … the wave functions have the form: 
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           𝜒𝑛
+(𝑧) = [2 (а𝐵

∗ )2𝑛5(𝑛!)2⁄ ]1 2⁄ |𝑧|𝑒𝑥𝑝(− |𝑧| 𝑛а𝐵
∗⁄ )ℒ𝑛

1(2 |𝑧| 𝑛а𝐵
∗⁄ ),         

(20) 
  

           𝜒𝑛
−(𝑧) = [2 (а𝐵

∗ )2𝑛5(𝑛!)2⁄ ]1 2⁄ 𝑧𝑒𝑥𝑝(− |𝑧| 𝑛а𝐵
∗⁄ )ℒ𝑛

1(2 |𝑧| 𝑛а𝐵
∗⁄ ),              

(21) 
 
where ℒ𝑛

1(𝑥) is the Lagger polynomial. 
 
For the base bound state of the 1D exciton, the wave function and self-energy are 
respectively written in the form 
 

                               𝜒0(𝑧) = 𝑙𝑖𝑚𝜘0→0
𝑒𝑥𝑝(−|𝑧| 𝜘0а𝐵

∗⁄ )

√𝜘0а𝐵
∗ = √𝛿(𝑧),                               (22) 

 
                                                           𝐸0 = −∞.                                                       (23) 
 
 
IV. Exciton Absorption 
Let us consider the process of electron transfer from the valence band to discrete 
energy levels in the quantized semiconductor wire in the conduction band and the 
formation of an exciton as a result of absorption of the incident light photon. Since the 
radius of the quantized semiconductor wire is small compared to the wavelength of 
light, the absorption in such a quantized semiconductor wire is not described by the 
law 𝑒𝑥𝑝(−𝛼𝑟0) , where 𝛼  is the volume absorption coefficient, but should be 
determined from the solution of Maxwell's equations. As applied to the surface layer 
in a metal-dielectric-semiconductor system, this question considered in [17] for 
interband magneto-optical absorption. According to [17], the frequency dependence 
of absorption is completely determined by the dimensionless function 𝛼(𝜔, 0), which, 
up to a multiplier determined by the geometry of the experiment, is proportional to 
the fraction of the energy of the light beam absorbed by the quantized semiconductor 
wire. In the case of exciton absorption, the function 𝛼(𝜔, 0) has the form 
 
1) For allowed transitions 
                        𝛼(𝜔, 0) = 𝛼(0)∑ |𝜒𝑛

+(0)|2𝑛∗𝑙𝑛 𝛿(𝜏𝑛∗𝑙𝑛),                              (24) 
 
2) For prohibited transitions 

                       𝛼(𝜔, 0) = 𝛼(0)∑ |
𝑑𝜒𝑛

+(0)

𝑑𝑧
|
2

𝑛∗𝑙𝑛 𝛿(𝜏𝑛∗𝑙𝑛),                              (25) 

 
where 

                          𝛼(0) = (8 𝜋√𝜀0⁄ )(𝑒2 ℏ𝑐⁄ ) (|𝑃𝑐𝑣
𝑦
|
2

𝑚0𝐸𝑔⁄ ) (𝜇 𝑚0⁄ ),                 (26) 

 
                                   𝜏𝑛∗𝑙𝑛 = Г𝑛∗𝑙 − (𝑅𝑦 𝐸0⁄ )𝑛−2,  𝑛 = 1,2, …                           (27) 
 

                Г𝑛∗𝑙 = (𝐸 − 𝐸𝑔 − ℏ2𝜆𝑛∗𝑙
2 2𝜇𝑟0

2⁄ ) 𝐸0⁄ ,    𝐸0 = 𝜋ℏ2 𝜇⁄  .                             (28) 
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V. Discussion Of The Results 
As can be seen from (27), in the considered model, the system of exciton subbands 
characterized by the quantum number n is “suspended” under the bottom of each size-
quantized subband with the quantum numbers 𝑛∗ and 𝑙 (a similar situation occurs in 
the problem of the volume exciton in a magnetic field [14,15], in a dimensionally 
quantized semiconductor film [18] and in the surface layer in a metal-dielectric-
semiconductor system [19]). Thus, in the case of interband absorption in quantized 
semiconductor wire, a series of 𝛿-shaped discrete lines should be observed (see (24) 
and (25)). The absorption threshold is 
 

                                       ℏ𝜔 = 𝐸𝑔 + ℏ2𝜆𝑛∗𝑙
2 2𝜇𝑟0

2⁄ .                                      

(29)  
 
From here one can see the law, the displacements of the lines in the short-wavelength 
direction with a decrease in the radius of the wire and an increase in the numbers of 
dimensionally quantized subbands 𝑛∗ and 𝑙. 
In conclusion, we note that the series of exciton absorption, as in the case of 
diamagnetic excitons [14, 15], have a number of specific features. Due to the invariance 
of 1D, the Coulomb potential 𝑒2 𝜀|𝑧|⁄  with respect to the transformation 𝑧 → −𝑧, the 
eigenfunctions must be divided into even and odd. These even and odd states in the 
case 𝑧0 → 0, when the interaction between the electron and the hole increasingly tends 
to the 1D Coulomb state, turn out to be pairwise degenerate, with the exception of the 
ground state, which is described by function (22), which has no nodes, and is always 
even [4]. Such a twofold degeneracy of the “1D Coulomb series” states is analogous to 
the degeneracy in the azimuthal quantum number in the case of three-dimensional 
(3D) Coulomb interaction. The energy of the Coulomb motion along z with respect to 
the boundaries of the continuous spectrum has the form 
 
                                       𝐸𝑧

′ = −𝑅𝑦 𝑛2⁄ ,   𝑛 = 0, 1, 2,⁡⁡⁡.⁡⁡.⁡⁡.                                       
(30) 
 
It follows from (23) and (30) that the binding energy of the ground state with 𝑛 = 0 in 
the 1D case is infinite and corresponds to the particle incident on the center. At 𝑧0 →
𝑐𝑜𝑛𝑠𝑡, the base state energy becomes finite, and double degeneracy is removed so that 
the excited exciton levels with 𝑛 = 1, 2,⁡⁡⁡.⁡⁡.⁡⁡.  turn out to be doublets (Fig. 1), and 
transitions are allowed only into the even components of these doublets. 
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A
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ti
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n

n=0 n=1 2 3
 

𝐸𝑔 + ℏ2𝜆1,0
2 2𝜇𝑟0

2⁄  

Fig. 1. Schematic representation of the 1D series exciton adjacent to the size-
quantized QSW subband with 𝑛∗ = 1 and 𝑙 = 0. (The dotted line shows the 

absorption in a bulk semiconductor without excitons. The doublet structure of the 
excited states of the 1D exciton with 𝑛 ≠ 0 is presented. Narrow vertical lines are 

components corresponding to odd states: they should not appear in the spectrum). 
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